
Bayesian Updates for a Beta distribution

Problemstalment :

You're tasked with estimating the conation
wate of a website

- proportion of
visitors who

-

I I take a desired achon leg . making a purchase-Pp
#

out of the total no . Of visitors. signing up for the

newsletter,
etc.)

No. Of conversions
Traditional method : Calculate simple = -

proportion of conversions to visitors Total no. Of visitors

I

but this doesn't account for uncertainity/variability in data traffic

& conversion rates
.

-

gives us only one point estimate. Doesn't tell us how sure

it is about the estimate

Bayesian
statistics allows us to model the unestainly a update estimate as new data comes in

&

- Also allows us to incorporate Prior knowledge
.

Peregistesdistribution Hi eQ

Density
P(x : < , B) : cle

I

normalisation

↓ iii
possible

constant

to ensure(pdf : I

X : 'success param
: large x skews distribution Range of

towards 1 outcomes blon

& 1

B : 'failure pasam' : Large & skews distribution ~ R .V for which distribution is defined
towardsO

eg. prob . of succes in a single trial of
Bernouli process

< B : spewed towards 1-suggesting a belief in higher
prob. Of success

x < B : skewedtowards o - belief in lower probability

If succes

② Binomial distribution

Numberof successes in a fined number of independent bernoullitrials ,
each

contrip , of
with same probability of success.

P(#success = k) = (m) p
R (pju-k n : total no . of trials

II

!
③ Priors

Your initial belief about a parameter , before observing any
data. ·

ar

You'renot entirely sure "Prior distribution"
-

eg
- our initial guess of

the conversion I / -ranance
rate I expertjudgement/historicaldata) mean How confident

best guess you
are

④ liklihood

Likelihood represents how probable
the observed data is given

the paraments
I

Conversion rate

This is where we incorporate newdata into our model

③ Postenor

updating !
- combining prior belief

with new data to from an updated belief
"Postior distribution"

X : observations /data O : parametes
New bestguess

Plo(X) :
X

P(X)

-
UKELIHOOD

-1 -> PRIOR

x P(O(X) = P(x10) . PIO)
-

-

P(X)
POSTERIOR
- evidence

Acts as a normalising
out to

ensure posterior dist integrates to

Deriving positions for
Beta distribution

Wemodel conversion rate as a Beta distribution - convenient because it is defined
on the interval 10, 17 , making

0- /
it suitable for probabilities- conversion

satt

& it has a shape that can easily

represent a wide range of beliefs about

the conversion rate .

-
our initial belief

Assume some prior
distribution about P

What is p !
--

Priorip :

P)
By -KERE

p
: probability of success in a Bernaulitrial

Of BETA(X, B)

↑
not a constant

we're trying to estimate this

- it is a R . V . whose distribution we are trying to model

& infor

- the whole point of using the Beta distribution

is to express our uncertainity about what the true value

o p night be
.

Now ,
likelihood of observing data , given p

likelihood of observing y
successes &

n-y failures Y
: # of daily conversions

n : # of daily visitors.

given
the probability of success P

P(y(p) : (4) p= (-p4- y

Now , updating our beliefs - posterior !

Posterior = P(ply) < P(y(p) . P(p)

a (i) P2Hp3"
· PO

↑ constants wirt . p

< p1
+ St

· < p)
"-Y +P- = Kernel of Betax' ,p

< =

y
+ x & B = n-y

+ B Jupdate rule !

... Posterior : Betalx+ y , B+ n - y)

Update your beliefs everytime you get
new data about your webtraffic

!

Bayesian Inference for
Normal Mean

Bayesian statistics
: updating our beliefs based on new evidence.

form an initial guess
- adjust the guess

as

you
learn

more

Pre Requisites :

① Normal distribution

N

Probability
density
for each

outcome

>

Range of possible
outcomes

for the parameter
A normal dist is widely used in financial

be measured
ing

modelling and many
other fields due to

its mathematical properties whichcan

simplify analysis
a calculations.

Many statistical tests assume normality
because of CLT : sum of many

lid wis

tendsbwards a

normal distribution

even if the original
variables are not

normally distributed. ⑳
Reigne

Exam results

② Prior distribution

Your initial belief about arg height of
trees in a forest ,

based on prev visits.

You'renot entirely sure : belief represented as a normal distribution

"Prior distribution"

/ -ranance
mean How confident

best guess you
are

③ Likelihood .

Now , you
measure height of a few bes during a new visit .

- also a normaldist.

Likelihood represents how probable
the observed data is given

the various guesses of argheis

④ Posterior

updating !
- combining prior belief

with new data to from an updated belief
"Postior distribution"

New bestguess
X : observations /data O : parametes

Plo(X) :
X

P(X)

-
UKELIHOOD

-1 -> PRIOR

2) PIO(X) I #(x10)
. PIO)

-

P(X)
POSTERIOR
- evidence

Acts as a normalising
out to

ensure posterior dist integrates to

calculating formulas for posterior
mean and variana for normals

When both the poster s the liblihood are normally distributed.

Posterios I post = stata el prior + 6"prior %data
mean

Gala + o prior

-I

Postmor post :

[rios" TreatVarianes

Moata : mean of data-influences
the liblihood

~data : vor of data
- uncertainity

Derivation Y : Observation

-
known

-

conditional observation distribution of Ply - NSM
,
of

- ~
fixed

Plyly) :

emp Foly-M")

3 Plyle) x cup 111y
- 4)")

- No , st
consider prior distribution for of

play) a acly-M)
-

e

: posterios

+
P(y(y) x P(y) X

L

-202) /(
-m)

"

+ (y
- 4)"sY

Esc)(mp+ m
2

- 2ym) -
2

+ (y) + M2- 2-yn) 32)

= /(82157) My
2

+ i'm + 32012 - 2 (408) + Myst)

I (454/4-misye

: P(ely) a Phylep · Ple & cup /skis /4 - it

: Plyly) - N)isy,↓ (
N-

① Precision :
- reciprocal of

variance

->
e :As) t : As it ↳2

T
T observation precision

· I prior precision
posterior precision

posterior variance : '/('/putrvariance + /observation variana

: Posti M - N(m , 3)

mean

m :

t yi i(y - N(M , 62)

· m+27

I y
N
-m -is t #°T->

mean

Observation

X Prior

posterior precision

: weighted arg of perior
mean &observation

mean I Prior mean +
observation IPostenor = ↳ -- Observationvarposteriorianceanor variance

Liid)

Now , usually , we have a random sample y , Y
... In of

observations instead of a single observation.

fly, ye ... July) : flyly) xflyclep ... flynle)

: Joint liblihood
= ly , - y)

:

oslyn -e

flys , y ... yuld) <e
200

x
ectrly-9)"

e

↓ eit
(44 + 0-2y , M + Yetm-ayze +.... (

L ep-iyi-2 Gi

< et/ep-245152). Polis
- jt)

-

some constant

wortef

x e <tn
(5 - 4)2

: f(y(y) x

What Is Bayesian Updating?
https://en.wikipedia.org/wiki/Bayesian_inference

Bayesian updating is a statistical technique used across various fields to refine predictions or
beliefs with new information. By starting with initial assumptions (priors) and incorporating
fresh data (likelihood), this method systematically updates our understanding, producing more
accurate and informed beliefs (posteriors). It's a dynamic process, where each update enhances
the precision of future predictions or decisions.

In practice, Bayesian updating is crucial for tasks like weather forecasting, medical diagnostics,
financial analysis, machine learning, product testing, and policy making. Whether adjusting
weather predictions with the latest satellite data, refining disease diagnoses with new test
results, optimizing investment portfolios with current market trends, or evolving public health
policies during a pandemic, Bayesian updating helps professionals make better decisions by
leveraging the power of continuous learning from new evidence.

Estimating website conversion rates using
Bayesian updating
Estimating website conversion rates using Bayesian updating is a powerful approach that allows
for continuous refinement of estimates as new data becomes available. We'll simulate a
scenario where daily visitor and conversion data is used to update our beliefs about a website's
conversion rate. This method provides a more nuanced understanding of the conversion rate,
accounting for uncertainty and variability over time.

Libraries and Setup
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta as beta_dist # for plotting purposes

Initial Beliefs
In Bayesian analysis, we start with a prior distribution that represents our initial beliefs before
observing any data. Here, we're using a Beta distribution to model our prior belief about the
conversion rate. These parameters reflect a conservative initial belief, suggesting a low
conversion rate. The choice of prior should be based on historical data, expert judgment, or
could be intentionally vague to let the data speak more strongly.

Initial prior
alpha_prior = 2
beta_prior = 18

https://en.wikipedia.org/wiki/Bayesian_inference

Simulating Daily Visitors and Conversions
Simulated daily visitors and conversions (can be increased for
example purposes)
daily_visitors = [100, 120, 150, 80, 200, 110, 130, 160, 90, 210]
daily_conversions = [10, 18, 20, 5, 50, 12, 20, 24, 7, 55]

Sequential Bayesian Updating
For each day, we update our belief (posterior) based on the observed data (likelihood) and the
prior. The posterior becomes the new prior for the next day's update.

Store posteriors
posteriors = []

Sequentially update beliefs
for visitors, conversions in zip(daily_visitors, daily_conversions):
 # Update posterior
 alpha_posterior = alpha_prior + conversions
 beta_posterior = beta_prior + visitors - conversions

 # Append to list
 posteriors.append((alpha_posterior, beta_posterior))

 # Next day's prior is today's posterior
 alpha_prior = alpha_posterior
 beta_prior = beta_posterior

Plotting the Results
Finally, we visualize how our belief about the conversion rate evolves over time as we
incorporate more data.

Plotting
x = np.linspace(0, 1, 1000)
plt.figure(figsize=(10, 7))

colors = plt.cm.viridis(np.linspace(1, 0, len(posteriors)))
for i, (alpha, beta) in enumerate(posteriors):
 plt.plot(x, beta_dist.pdf(x, alpha, beta), label=f'Day {i+1}',
color=colors[i])

plt.title('Evolution of Posterior Distributions Over Days')
plt.xlabel('Conversion Rate')
plt.ylabel('Density')
plt.legend()
plt.grid(which='major', linestyle='-', linewidth='0.5', color='grey')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='grey')

plt.minorticks_on()
plt.show()

Reading the Plot
The x-axis represents possible conversion rates, ranging from 0 to 1 (0% to 100%). Each point
on this axis is a potential conversion rate value for the website.The y-axis shows the density of
the probability distribution for each conversion rate value. Higher values indicate a higher
probability (belief) that the conversion rate is close to the corresponding x-value.

Each curve represents the posterior distribution of the conversion rate after updating our beliefs
with data from a specific day.

Interpreting the Evolution
1. The width of each curve indicates the uncertainty or variance in our belief about the

conversion rate. Wider curves suggest greater uncertainty, while narrower curves
indicate more confidence in our estimate. As we gather more data over time, we
typically see these curves become narrower, reflecting increased certainty about the
conversion rate.

2. The location of the peak (the mode of the distribution) for each curve represents the
most probable conversion rate given the data up to that day. Observing how the
peak moves from one day to the next can indicate trends in the conversion rate over
time.

3. The sequence of curves shows how our belief about the conversion rate evolves.
Initially, our belief may be quite uncertain and broad, but as more data is collected,
the posterior distributions become more peaked and narrow, indicating a more
precise estimate of the conversion rate.

###What We Observe and What It Means Increasing Precision: The curves become
progressively narrower, it means we are becoming more confident in our estimate of the
conversion rate. This is expected as more data allows us to update our beliefs with greater
accuracy.

Shifting Peaks: The peak of the distributions shifts over time, it suggests that our understanding
of the conversion rate is changing with the influx of new data. For example, if the peaks move to
the right, it suggests an increasing trend in the conversion rate.

Stabilization: We see that over time, the curves start to look similar and stabilize around a
particular range of values, it means that additional data is not significantly changing our belief
about the conversion rate. We have reached a point where our estimate of the conversion rate is
relatively precise and consistent with the observed data.

A/B Testing
A/B testing is a way to find out which of two options is better by comparing them. It's used in
many areas, like improving websites, emails, or ads, to see which one works best for goals like
getting more clicks or sales. The key to a good test is to clearly pick what to measure, make sure
the test is fair, and run it long enough to be sure about the results. This helps make smart
choices based on actual data.

Suppose we are conducting an A/B test to compare the conversion rates of two different website
designs, labeled Design A and Design B. A/B testing is a popular method for evaluating changes
to web pages, marketing strategies, or any other variable that might affect user behavior. By
randomly assigning visitors to either version A or B, we can observe which design performs
better in terms of conversion rate, where "conversion" might mean making a purchase, signing
up for a newsletter, or any other desired action.

The goal is to use Bayesian methods to update our beliefs about the conversion rates of both
designs as new data comes in each day. This approach not only allows us to estimate the
conversion rates more accurately but also to understand the uncertainty around these
estimates.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta as beta_dist

Initialize prior beliefs
alpha_A, beta_A = 1, 1 # Prior for design A
alpha_B, beta_B = 1, 1 # Prior for design B

Simulated daily visitors and conversions over 10 days
daily_visitors_A = [100, 120, 130, 110, 150, 140, 160, 180, 200, 210]
daily_conversions_A = [10, 14, 15, 11, 16, 17, 18, 20, 22, 23]

daily_visitors_B = [100, 120, 130, 110, 150, 140, 160, 180, 200, 210]
daily_conversions_B = [12, 16, 18, 13, 19, 21, 24, 26, 29, 31]

Setup plot
plt.figure(figsize=(14, 8))

x = np.linspace(0, 1, 1000)
for day in range(len(daily_visitors_A)):
 # Update beliefs with data from the day
 alpha_A += daily_conversions_A[day]
 beta_A += daily_visitors_A[day] - daily_conversions_A[day]
 alpha_B += daily_conversions_B[day]
 beta_B += daily_visitors_B[day] - daily_conversions_B[day]

 # Plot posterior distributions for the day
 plt.plot(x, beta_dist.pdf(x, alpha_A, beta_A), label=f'Design A,
Day {day + 1}')
 plt.plot(x, beta_dist.pdf(x, alpha_B, beta_B), linestyle='--',
label=f'Design B, Day {day + 1}')

Enhance plot
plt.title('Daily Evolution of Posterior Distributions for Designs A
and B')
plt.xlabel('Conversion Rate')
plt.ylabel('Density')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.grid()
plt.show()

Interpreting the Results
1. Narrowing of Distributions: The curves become narrower over time, it indicates

increased certainty about the conversion rate estimate. This is expected as
accumulating more data reduces uncertainty.

2. Shifts in the position of the peak of these distributions indicate changes in the
estimated most likely conversion rate based on the accumulated data.

3. Comparison Between Designs: By comparing the distributions of Design A and
Design B, we can observe which design tends to have higher conversion rates. For
instance, Design B's curves are consistently to the right of Design A's, it suggests that
Design B has a higher conversion rate.

4. Uncertainty and Overlap: Overlapping distributions between designs, especially in
the early days, highlight uncertainty and the need for more data to distinguish
between the designs. As the test progresses, design B consistently shows higher
conversion rates with less overlap, and therefore it can be considered as the better
performing design.

Overall, as days progress, we observe the posterior distributions becoming narrower, indicating
increased confidence in the conversion rate estimates. This is because more data provides more
evidence, reducing uncertainty.

Comparing the distributions of Designs A and B across days allows us to see how our belief
regarding which design is superior evolves over time. If one design consistently shows higher
conversion rates with increasing confidence (narrower distributions), it suggests that design is
more effective.

The Bayesian approach to A/B testing provides a robust framework for understanding not just
which design performs better but also how confident we can be in that assessment.

Bayesian Updating with Monthly Stock Returns
In this section, we'll explore how to use Bayesian updating to refine our estimates of a stock's
average monthly return. We'll focus on Apple Inc. (AAPL) as our example, but this method can be
applied to any stock.

Why Use Bayesian Updating for Stock Returns?
The stock market is inherently uncertain and unpredictable. Bayesian updating offers a
systematic way to incorporate new data (e.g., monthly stock returns) into our predictions,
allowing us to adjust our expectations in light of new information.

Assumption About Returns: Normal Distribution
We're assuming that the stock returns follow a normal distribution. This assumption means we
believe the returns are symmetrically distributed around a mean value, with the majority of the
returns falling within a certain distance (measured by the standard deviation) from this mean.
The normal distribution is chosen for its mathematical properties and the Central Limit
Theorem, which suggests that averages of large samples of independent, identically distributed
variables tend toward a normal distribution, even if the original variables themselves are not
normally distributed.

Setting up the environment
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

Fetch real stock data for approximately the last 30 months with
monthly data

Assign the ticker symbol for Apple Inc. to a variable for easy
reference
ticker = "AAPL"

Download 10 years of monthly Apple Inc. stock data using the Yahoo
Finance API
'period' specifies the duration of the data (10 years), and
'interval' sets the data frequency (1 month)
data = yf.download(ticker, period="10y", interval="1mo")

Calculate the monthly returns based on the adjusted close prices
'pct_change()' computes the percentage change between the current
and prior elements, giving monthly returns
'dropna()' removes any missing values that result from the
percentage change calculation

data['Monthly Return'] = data['Adj Close'].pct_change().dropna()

Extract the monthly returns as a NumPy array, excluding the first
element because it's NaN due to 'pct_change()'
The first month's return is not calculable as there's no previous
month's data to compare
real_monthly_returns = data['Monthly Return'].values[1:]

 [*********************100%%**********************] 1 of 1 completed

Initial Beliefs
Before we see any data, we start with an initial guess (or "prior") about the stock's average
monthly return. Let's say our initial guess is a 0.1% average monthly return with a standard
deviation (a measure of uncertainty) of 2%.

Initial prior beliefs about the mean monthly return
mean_prior = 0.001 # Initial guess for the mean monthly return
variance_prior = 0.02 ** 2 # Variance of the prior

The observation variance represents our assumption about the variability (or uncertainty) in the
new data we observe each month, which in this case is the monthly returns of a stock.

By using the historical variance of the monthly returns, we are making an assumption that the
future variability of these returns will be similar to what we have observed in the past.

In a more complex model, you might consider dynamic models of observation variance, where
the variance itself could change over time or be influenced by other factors. However, for the
sake of simplicity and focus on the core concept of Bayesian updating, using a fixed observation
variance based on historical data simplifies the model without introducing unnecessary
complexity. This allows for a clearer demonstration of how Bayesian updating works. (Note: The
choice of observation variance is a critical assumption in the model. It's essential to consider
whether the historical variance is a reasonable estimate for future variability. Factors like
changes in the company's fundamentals, economic environment, or market conditions could
necessitate adjustments to this assumption.)

Known observation variance (assuming fixed for simplification)
observation_variance = np.var(real_monthly_returns)

Update function
Our update function, update_mean_prior, will take our current beliefs (the "prior"), a new piece
of data (the "observation"), and our assumptions about the data's variability to calculate a new
estimate (the "posterior").

We're assuming that the stock returns follow a normal (Gaussian) distribution. The mean (μ) of
the distribution represents the average return of the stock over a certain period. The standard
deviation (σ) measures the dispersion or variability around the mean, indicating how much the
returns can deviate from the average return.

Intuitive Explanation

1. Combining Precisions: Adding the precisions (inverse of variances) of the prior and the
observation reflects the idea of accumulating evidence. Each piece of data (observation)
adds to the precision of our knowledge about the parameter.

2. Reduced Uncertainty: The resulting posterior variance is a harmonic mean of the prior
and observation variances, which guarantees it to be smaller than the smallest of the
two. This mathematical property aligns with the intuitive concept that adding new
information reduces uncertainty.

Function to perform Bayesian updating of the mean
def update_mean_prior(prior_mean, prior_variance, observation,
observation_variance):
 posterior_variance = 1 / ((1 / prior_variance) + (1 /
observation_variance))
 posterior_mean = posterior_variance * ((prior_mean /
prior_variance) + (observation / observation_variance))
 return posterior_mean, posterior_variance

Updating our beliefs
With each new month's return data, we use our function to update our beliefs. This process
refines our estimate of the average monthly return based on all the data we've accumulated.

Lists to store the updated means and variances
updated_means = [mean_prior]
updated_variances = [variance_prior]

Sequentially update beliefs with each new month's return
for month_return in real_monthly_returns:
 mean_prior, variance_prior = update_mean_prior(mean_prior,
variance_prior, month_return, observation_variance)
 updated_means.append(mean_prior)
 updated_variances.append(variance_prior)

Visualizing the Results
Finally, we plot our updated estimates over time, showing how our belief about the average
monthly return has evolved.

Convert variances to standard deviations for plotting
updated_stds = np.sqrt(updated_variances)

Plotting the updated means over the months, with std deviation as
shaded area
plt.figure(figsize=(10, 6))
plt.plot(updated_means, label='Updated Mean Monthly Return')
plt.fill_between(range(len(updated_means)),
 np.array(updated_means) - np.array(updated_stds),

 np.array(updated_means) + np.array(updated_stds),
 color='lightblue', alpha=0.5, label='Std Dev')
plt.xlabel('Month')
plt.ylabel('Mean Monthly Return')
plt.title('Sequential Update of Beliefs on Mean Monthly Return')
plt.legend()
plt.show()

plt.figure(figsize=(10, 6))
plt.plot(updated_stds, label='Updated STD Monthly Return')
plt.xlabel('Month')
plt.ylabel('STD Monthly Return')
plt.title('Sequential Update of Beliefs on STD of Monthly Return')
plt.legend()
plt.show()

The updated_stds variable represents the standard deviations of the posterior distributions as
we sequentially update our beliefs with new observations.Decreasing updated_stds in the
context of Bayesian updating signifies a reduction in the uncertainty or variance of our estimates
over time.

Each new piece of evidence contributes to refining our knowledge about a parameter (e.g., the
mean monthly return of a stock). Decreasing updated_stds means that, with each update, we're
becoming less uncertain about the parameter's true value. This is a desired outcome, as it
suggests that the accumulating data is effectively informing our estimates.

Other: Synthetic stock data, and using pymc to
update beliefs
import numpy as np
import pymc as pm
import matplotlib.pyplot as plt

Generate synthetic daily returns data for 30 days (replace this with
real data)
np.random.seed(42)
true_mean = 0.001 # True average daily return
daily_returns = np.random.normal(true_mean, 0.02, 30) # Synthetic
daily returns with mean = 0.001 and std = 0.02

Initial prior beliefs about the mean daily return
mean_prior = 0.001 # Initial guess for the mean daily return
std_prior = 0.02 # Standard deviation for the prior

List to store the updated means and standard deviations
updated_means = [mean_prior]
updated_stds = [std_prior]

Sequentially update beliefs with each new day's return
for day_return in daily_returns:
 with pm.Model() as model:
 # Prior distribution for the mean return
 mean_return = pm.Normal('mean_return', mu=mean_prior,
sigma=std_prior)

 # Assuming a known observation error (standard deviation of
returns)
 observation_error = 0.02 # This could be adjusted based on
historical volatility

 # Update with new observation
 observed_return = pm.Normal('observed_return', mu=mean_return,
sigma=observation_error, observed=day_return)

 # Sample from the posterior
 trace = pm.sample(1000, return_inferencedata=False, chains=1)

 # Update the prior with the results of the current day
 mean_prior = np.mean(trace['mean_return'])
 std_prior = np.std(trace['mean_return'])

 # Store the updated values
 updated_means.append(mean_prior)
 updated_stds.append(std_prior)

Plotting the updated beliefs over time
days = range(len(updated_means))
plt.figure(figsize=(12, 6))
plt.plot(days, updated_means, label='Updated Mean Daily Return')
plt.plot(days, updated_stds, label='Updated STD Daily Return')
plt.fill_between(days, np.array(updated_means) -
np.array(updated_stds), np.array(updated_means) +
np.array(updated_stds), color='lightgrey', label='1 STD')
plt.xlabel('Day')
plt.ylabel('Mean Daily Return')
plt.title('Updated Beliefs on Mean Daily Return Over Time')
plt.legend()
plt.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

