Boyesion Updodes fo5 @ Baa duchibuhon

Problam stlemendt -
Mouve tantaed wWitn U»bYVLDLO\A/Ua e ton~vertion Yol @b a voddoeite

Wfbmw %“ vigilot who

p—
i i Jover a dusived. adhon (ma (Y\OJM\/GD a purdrase
oud § he hlatno. §) visitor . A i fo dne

LYY IVAVE Y. 7N de

Traduhonal wudined * (o ouloe Simple - No~\\ oNwen Sl snA
\aw?oﬂ\bn % onvemtva b visiiors Torol wo- visibe

\
bt 4w Aok ausvnk fw ww/rtw‘m'a / vam‘alo\‘u'\a in dota ‘rnkk\‘(.

i ‘ \ hero JSuve
vevwon yale. — wumﬁ«d one. point askmady . Doaaik &L W
o T ? it (s cloowt tne extsmadt

Sehshe allouwx w bo wodel e wwbutmvu.\(? s Wmﬁmumm o in.

® a o — Mso ool w b Mw—rrorm.h Pnos hmmnhtﬂfab
\
Pre peauictas Jo
\ Probability density function
| e 2.5
duie budh = =05 —
@ Rala W on /7 aa= 5[? Sy —
y =1,B=3 —
o T i
- a=2,p=5 —
P(’L',ohP): o3 Q-i) not e
Sovae 0A

(elxafp)) proceil1 5 |
] 2
1t

nermaldsahon on
ovmtavk Uil
b ensure §paf=| 0.5
o(MRPINITIYE Fm-aW\". lm-ae- x skeat dughnbuhon ?;“3.1‘
0 L 1 1 34
fovoords 1 0 0.2 0.4 0.6 0.8 1 e
Vi ' Adusilouhowt
R il ki i “:"m . PDF 2 1(1 - ﬁ#_l\ RV for wohick dishibabon & Ao
w N »
(1 P.o\,,q,;um in a “‘5“' hu.s;
o> P gnuwed bowards 1 — sugaeabiyy aloif in higher B(a, B) Bernowlts poess
?rvb. q Sueenk _ F(a)F(IB) :
where B(a, 8) = Tlat 8] and I is the Gamma
X< - gQeowed lovoards o — beldd Lower probooiaiuty (a + /3)
F ' function.

‘ELsuwM

@ 2ivorwial dic buhon
Nw\mq sMeLuas iw alﬁxw.el mw\AJoemék ivde‘:w&le ol hwals | @At
with savwe pvowbiua § Queeess.

plesam=k) = ()" O

l
n)

@ Priovs k\)\, Jom
Mour imikal eliek abbut & parewdta, bofore oSy awvg dolden . w
\ . rm
{oure Vot wbwid cure " \m"tm Akhrahon "
eg- T inihiod g g e tomveriom / \\
Yol ‘ Sy "
(enpet O«A&@(V\mlwgo mldah) o vamaviee
\ bLast gus o W&V\t
G aW\ ave
@ Wiebiweod
Welilnood WK Wovo probaie dno obtevved dode ic O.\VQ,,\ ‘o PO\W‘V{AM
Conveorm on Yot

TWie (¢ Whare we \'v\wrrom yaw dode. inbe ounr nvuodlel

6) Posunor
UMVK" - wvwb«vulzqo prvr i Witn wao doda b A&

Newo \wkﬁum Y obtervokens|data B povanweldas

s an uf&a.ede Beha.%
" ‘aos\m‘m Auidmbubven’

ol - PLOX)

px) i
/\/\K&L\HUOD
5 ololy) - PLa® PO T
o PLX)

posTerI R

Dmriviv\d poseovs ,{30—0' Bata dishmbuhon

Ne wod® tonversion vadz Ga q Bda dashbubvon — onwernont lecause T NS éhkww?
o o inaerveld 1o\l .mo.)a’vao

o—>|
" MW&W Vm\oaloiuh'ex—— Lcwvm?:;;
3 ik s 2 SMape ok mueouu\a
n‘;uwm.t o wide vavge \W%a’am
b onveruon Yokt

our inilvel belug)

What is p 7
?\’\'6\'(f) = ol U— B KER:E;W) P: Probab\'ul{[q Sutus M G Rerroudt Fal
¥ l \ e h‘a\‘vzf b eshmode twis
ot) ok & tamstamt -
- v is 6 RV, whose dismbuhon we ove ha“'a) o 3.0

3 inge
-M Mfolﬂ q Vs\v e Pd‘ NS)an
'S e'nfrmw unawmd abowt What e e valu
ﬂ P miou ke.

Now, Wekinood & o\asm\n‘sao data, given p
\).WV.DO& 5\ ObSOT\V\\aO a PAYSTIVT G n,d {Q&\w\—c& + % Ml-\ﬁ BNV el
n: ¥ aa»\a visihms.

%TW e Vmbmu'laﬁb SUCaA P

g - () P e
Now, ufm\,oo ouv \o&m{f. — me— L
Poskrios = P(P\a) oL P(a‘i’) :
(5 ?—\

« () et - I &

<X F‘éi—x—\ - (\—r)n—lf?" - \(UV\QL%BM(“HF‘)
ol = a+ol PR %‘:m—a+p]U‘&wm'

P (f)

\ sttt it p

4N —)
R wa(Nfa' % a
. fotamor -

new Adosa oo dowr wa,%h‘a'fb
hvw,daw ﬁ'&
Up&m aowzr W"—%&

anuxc&am \‘n{u—emu ,f«w Nornmal Mean

Ba-v(-lu)av Stahshe - u.?&aﬂw(r ovs laalicfe bomd on vmew evidunet .
form an (vikod was _— a&ﬂ\w\rm @MUA IV aev\ orn

o e
Pve Qafvu:&\&:& :
J
O Nosmall dusmbuon
. 4\
PIO\"QQOW‘ {1 Standard | 1 Standard
¥ deviation deviation
&Q\/\M"d | [340% | | [34.1% |
"w Al 1 Standard ; 1 Standard
deviation 1 deviation
cwthowe 1 Standard| 1 Standard
deviation, | deviation
22%| 136% | 13.6% A >
Ravge foss e

owleovua
‘ Jor e parmv&&t(
A worvial dist i widlnhd Wied in - finamecal MVK)
ww&,wv(r owd Moy odner Jde due o
e watemalveal me,m e tan Histogram of height of students with Normal curve overlaid
&wfu% amLUw 3 dodohonk
Moy Sraheivag, toks oosume nesmaliy

. A wvge
betortre 8 CLT: Cum Y Yvwmq
Yonda bvaoner a

= Normal distribution with u = 172.38, 6 = 9,85|

0.03 0.04
| |

Density
0.02
1

vwormal dishbubhon

0.01
1

aven t‘ e on‘@«'vw&
Vc‘m‘m am 'Y\Db [T T T T 1
[M"“’! i l . 150 160 170 180 190 200

\wavt

0.00
L

praw yeulds

R) Priov dushnbubon
Moun ivuboll \anlm% ool a\r% \uula\/\ﬁ ﬁk frers in a %nru!l: , bored o prev Visike.

Yowre ok wmeU ouxe - \929.10.& WQMM 0 & oAl dstmbulvon

\ W\"bs Auehilowhom
/ vamavue
b;mw Row W\k\cﬂl\/\t
g g o

Now “m\ YWAANUNC, bwﬁV&%\ a 36-\/0 hrera &.wnv(r 0 vow VWit . — aro aviorruad @it
Welinood \—WK \/\nmpm\aab\-b«\'w obsovved doda Lcoww o vamows zduw» %aﬁw

©® woom
UM\'K | - tevw\/w/qo proT be!bw.g Wit wo dada b {qnm an Uf&aexd lae!b.o,&)
" goﬁ:mmr Aismbubhen’

Newvo \aﬂbbabwds

¥ owvtemohent|date B povdvweldas

ploly) - PleX)

PIx)
LKE LA K 0OD

/
— r—4\
A pe\) - PL)C\‘B\‘PE) PRIOE.

—_
pPosTer| OV

PLX)

Coloutahing forauudos fov posumos TuaAm and VONIMA for norvals
\Y

Wem botw bue \'orhozr s e LdeliVeed. one ﬂc:rvvsaha Asshobuidl .

z V
Poxirviow ""Posk = € dole ﬂ{?ﬁm * 6 pmor J‘[Mg‘
&3 R
dola + & ‘mw
2 -\
o9 WL 6,2?,“0‘ sz

N pota WV\TBMM -"\V\{uuvwm LileQilnesd

f&EM : \mrc\&sa&a ——wvxuv#ou‘w‘(/a

Paxiverhon ‘d obse yvevon

ko

\ m
Londitongd Observadvem Ausrloubon i\ N \1{ —NlYy, e)

P — ez y)

» Py « Wl'&—‘;\d'”)q)
Lomatdan frics. distiowhon for 4 — N w %)

PLy) A o jo ™)

P(a\xf) X PLy) X e /

-\ ‘ Q)" Ol ‘{)1“}
alge)

L[e g

-

agter
-2 k*\m & ’-la-c):)

-

Qste?

— (“*S”)\ 4 - M]t

Qels? et s

e gt @'Ms‘)

g ?\u\\a) ~ n| €m+ Sy o2t
J 6li el
nl-.g)
) Precision -
A, - ag \ L s \
7 ﬂ (c2r &) - e28" S * _}'—?'
\ T u(« DS rvodven preesETon
Posmn'oo’ Freﬂig‘m "Mﬁ qwrw'mm

posoror veamar > ‘/ \
L [Ww vonaviee t \IDW\N\W\ Vﬂm‘o,m)

Posonoy¥ |

YO\ 1®

1
- n s
= & "+ 5 ‘ a
V)
\ = st N e
i et Ms
Ver+ \g? T
- o\xexvenov
of
?“WV\

, T)’n v VAW N o\gse/rchWY\
= PQSW'\ ov .

V OV AW 2
'YVULWY\ W

U\'d>
Nowo | Waﬂbd (wL Mave o vavdem A R (R ﬂ)

pWorvahons \vukad \ a .S\‘vxgb. obsenvedhen |

“d"‘d*"'d“\ﬂ) z%‘;\‘lﬂ)w\dmuﬂ qﬁtd“\q)

. Joink Lebihhesd
l‘,‘ \u.-,pl "—\‘-, L’ilz""\ o '9’9‘ \u“-_;_n

Blp ogee) < e e

—:“.‘{‘é\"* -‘{"—a‘anl{ % \a;fﬂ’-asd,;.l o)

X e

« C—;";ﬂ’ ENE)

¢ i) w)
B e)

0(e

What Is Bayesian Updating?

https://en.wikipedia.org/wiki/Bayesian_inference

Bayesian updating is a statistical technique used across various fields to refine predictions or
beliefs with new information. By starting with initial assumptions (priors) and incorporating
fresh data (likelihood), this method systematically updates our understanding, producing more
accurate and informed beliefs (posteriors). It's a dynamic process, where each update enhances
the precision of future predictions or decisions.

In practice, Bayesian updating is crucial for tasks like weather forecasting, medical diagnostics,
financial analysis, machine learning, product testing, and policy making. Whether adjusting
weather predictions with the latest satellite data, refining disease diagnoses with new test
results, optimizing investment portfolios with current market trends, or evolving public health
policies during a pandemic, Bayesian updating helps professionals make better decisions by
leveraging the power of continuous learning from new evidence.

Estimating website conversion rates using
Bayesian updating

Estimating website conversion rates using Bayesian updating is a powerful approach that allows
for continuous refinement of estimates as new data becomes available. We'll simulate a
scenario where daily visitor and conversion data is used to update our beliefs about a website's
conversion rate. This method provides a more nuanced understanding of the conversion rate,
accounting for uncertainty and variability over time.

Libraries and Setup

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import beta as beta dist # for plotting purposes

Initial Beliefs

In Bayesian analysis, we start with a prior distribution that represents our initial beliefs before
observing any data. Here, we're using a Beta distribution to model our prior belief about the
conversion rate. These parameters reflect a conservative initial belief, suggesting a low
conversion rate. The choice of prior should be based on historical data, expert judgment, or
could be intentionally vague to let the data speak more strongly.

Initial prior
alpha prior = 2
beta prior = 18

https://en.wikipedia.org/wiki/Bayesian_inference

Simulating Daily Visitors and Conversions

Simulated daily visitors and conversions (can be increased for
example purposes)

daily visitors = [100, 120, 150, 80, 200, 110, 130, 160, 90, 210]
daily conversions = [10, 18, 20, 5, 50, 12, 20, 24, 7, 55]

Sequential Bayesian Updating

For each day, we update our belief (posterior) based on the observed data (likelihood) and the
prior. The posterior becomes the new prior for the next day's update.

Store posteriors
posteriors = []

Sequentially update beliefs

for visitors, conversions in zip(daily visitors, daily conversions):
Update posterior
alpha posterior = alpha prior + conversions
beta posterior = beta prior + visitors - conversions

Append to list
posteriors.append((alpha posterior, beta posterior))

Next day's prior is today's posterior
alpha prior = alpha posterior
beta prior = beta posterior

Plotting the Results

Finally, we visualize how our belief about the conversion rate evolves over time as we
incorporate more data.

Plotting
X = np.linspace(0, 1, 1000)
plt.figure(figsize=(10, 7))

colors = plt.cm.viridis(np.linspace(1l, 0, len(posteriors)))
for i, (alpha, beta) in enumerate(posteriors):

plt.plot(x, beta dist.pdf(x, alpha, beta), label=f'Day {i+l1}',
color=colors[i])

plt.title('Evolution of Posterior Distributions Over Days')
plt.xlabel('Conversion Rate')

plt.ylabel('Density")

plt.legend()

plt.grid(which="major"', linestyle='-', linewidth='0.5', color='grey"')
plt.grid(which="minor"', linestyle=':"', linewidth='0.5', color='grey"')

plt.minorticks on()

plt.show()
Evolution of Posterior Distributions Over Days
a0 1 Day 1
Day 2
Day 3
35 — Day 4
— Day5
— Day 6
30 — Day?7
—— Day 8
— Day?9
254 —— Day 10
=
2 20
&
15 -
10 -
5 -
0 _
T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Conversion Rate

Reading the Plot

The x-axis represents possible conversion rates, ranging from 0 to 1 (0% to 100%). Each point
on this axis is a potential conversion rate value for the website.The y-axis shows the density of
the probability distribution for each conversion rate value. Higher values indicate a higher
probability (belief) that the conversion rate is close to the corresponding x-value.

Each curve represents the posterior distribution of the conversion rate after updating our beliefs
with data from a specific day.

Interpreting the Evolution
1. The width of each curve indicates the uncertainty or variance in our belief about the
conversion rate. Wider curves suggest greater uncertainty, while narrower curves
indicate more confidence in our estimate. As we gather more data over time, we
typically see these curves become narrower, reflecting increased certainty about the
conversion rate.

2. The location of the peak (the mode of the distribution) for each curve represents the
most probable conversion rate given the data up to that day. Observing how the
peak moves from one day to the next can indicate trends in the conversion rate over
time.

3. The sequence of curves shows how our belief about the conversion rate evolves.
Initially, our belief may be quite uncertain and broad, but as more data is collected,
the posterior distributions become more peaked and narrow, indicating a more
precise estimate of the conversion rate.

HH#HWhat We Observe and What It Means Increasing Precision: The curves become
progressively narrower, it means we are becoming more confident in our estimate of the
conversion rate. This is expected as more data allows us to update our beliefs with greater
accuracy.

Shifting Peaks: The peak of the distributions shifts over time, it suggests that our understanding
of the conversion rate is changing with the influx of new data. For example, if the peaks move to
the right, it suggests an increasing trend in the conversion rate.

Stabilization: We see that over time, the curves start to look similar and stabilize around a
particular range of values, it means that additional data is not significantly changing our belief
about the conversion rate. We have reached a point where our estimate of the conversion rate is
relatively precise and consistent with the observed data.

A/B Testing

A/B testing is a way to find out which of two options is better by comparing them. It's used in
many areas, like improving websites, emails, or ads, to see which one works best for goals like
getting more clicks or sales. The key to a good test is to clearly pick what to measure, make sure
the test is fair, and run it long enough to be sure about the results. This helps make smart
choices based on actual data.

Suppose we are conducting an A/B test to compare the conversion rates of two different website
designs, labeled Design A and Design B. A/B testing is a popular method for evaluating changes
to web pages, marketing strategies, or any other variable that might affect user behavior. By
randomly assigning visitors to either version A or B, we can observe which design performs
better in terms of conversion rate, where "conversion" might mean making a purchase, signing
up for a newsletter, or any other desired action.

The goal is to use Bayesian methods to update our beliefs about the conversion rates of both
designs as new data comes in each day. This approach not only allows us to estimate the
conversion rates more accurately but also to understand the uncertainty around these
estimates.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta as beta dist

Initialize prior beliefs
alpha A, beta A =1, 1 # Prior for design A
alpha B, beta B 1, 1 # Prior for design B

Simulated daily visitors and conversions over 10 days
daily visitors A = [100, 120, 130, 110, 150, 140, 160, 180, 200, 210]
daily conversions A = [10, 14, 15, 11, 16, 17, 18, 20, 22, 23]

daily visitors B = [100, 120, 130, 110, 150, 140, 160, 180, 200, 210]
daily conversions B = [12, 16, 18, 13, 19, 21, 24, 26, 29, 31]

Setup plot
plt.figure(figsize=(14, 8))

X = np.linspace(0, 1, 1000)
for day in range(len(daily visitors A)):
Update beliefs with data from the day
alpha A += daily conversions A[day]
beta A += daily visitors A[day] - daily conversions A[day]
alpha B += daily conversions B[day]
beta B += daily visitors B[day] - daily conversions B[day]

Plot posterior distributions for the day

plt.plot(x, beta dist.pdf(x, alpha A, beta A), label=f'Design A,
Day {day + 1}')

plt.plot(x, beta dist.pdf(x, alpha B, beta B), linestyle='--',
label=f'Design B, Day {day + 1}')

Enhance plot

plt.title('Daily Evolution of Posterior Distributions for Designs A
and B')

plt.xlabel('Conversion Rate')

plt.ylabel('Density"')

plt.legend(bbox to anchor=(1.05, 1), loc='upper left')

plt.tight layout()

plt.grid()

plt.show()

Density

50 4

0 4

30 4

204

10 4

Daily Evolution of Posterior Distributions for Designs A and B

—— Design A, Day 1
Design B, Day 1
—— Design A, Day 2
-=-- Design B, Day 2
—— Design A, Day 3
--- Design B, Day 3
ﬂ i Design A, Day 4
I 15 —--- Design B, Day 4
l“n‘ Design A, Day 5
] —-—- Design B, Day 5
A —— Design A, Day 6
Design B, Day 6
—— Design A, Day 7
[=== Design B, Day 7
‘ L —— Design A, Day 8
=== Design B, Day 8
Design A, Day 9
--- Design B, Day 9

Design A, Day 10

-- Design B, Day 10

s T

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Conversion Rate

Interpreting the Results
1.

Narrowing of Distributions: The curves become narrower over time, it indicates
increased certainty about the conversion rate estimate. This is expected as
accumulating more data reduces uncertainty.

Shifts in the position of the peak of these distributions indicate changes in the
estimated most likely conversion rate based on the accumulated data.

Comparison Between Designs: By comparing the distributions of Design A and
Design B, we can observe which design tends to have higher conversion rates. For
instance, Design B's curves are consistently to the right of Design A's, it suggests that
Design B has a higher conversion rate.

Uncertainty and Overlap: Overlapping distributions between designs, especially in
the early days, highlight uncertainty and the need for more data to distinguish
between the designs. As the test progresses, design B consistently shows higher
conversion rates with less overlap, and therefore it can be considered as the better
performing design.

Overall, as days progress, we observe the posterior distributions becoming narrower, indicating
increased confidence in the conversion rate estimates. This is because more data provides more
evidence, reducing uncertainty.

Comparing the distributions of Designs A and B across days allows us to see how our belief
regarding which design is superior evolves over time. If one design consistently shows higher
conversion rates with increasing confidence (narrower distributions), it suggests that design is
more effective.

The Bayesian approach to A/B testing provides a robust framework for understanding not just
which design performs better but also how confident we can be in that assessment.

Bayesian Updating with Monthly Stock Returns

In this section, we'll explore how to use Bayesian updating to refine our estimates of a stock's
average monthly return. We'll focus on Apple Inc. (AAPL) as our example, but this method can be
applied to any stock.

Why Use Bayesian Updating for Stock Returns?

The stock market is inherently uncertain and unpredictable. Bayesian updating offers a
systematic way to incorporate new data (e.g., monthly stock returns) into our predictions,
allowing us to adjust our expectations in light of new information.

Assumption About Returns: Normal Distribution

We're assuming that the stock returns follow a normal distribution. This assumption means we
believe the returns are symmetrically distributed around a mean value, with the majority of the
returns falling within a certain distance (measured by the standard deviation) from this mean.
The normal distribution is chosen for its mathematical properties and the Central Limit
Theorem, which suggests that averages of large samples of independent, identically distributed
variables tend toward a normal distribution, even if the original variables themselves are not
normally distributed.

Setting up the environment
import numpy as np

import yfinance as yf

import matplotlib.pyplot as plt

Fetch real stock data for approximately the last 30 months with
monthly data

Assign the ticker symbol for Apple Inc. to a variable for easy
reference
ticker = "AAPL"

Download 10 years of monthly Apple Inc. stock data using the Yahoo
Finance API

'period' specifies the duration of the data (10 years), and
'interval' sets the data frequency (1 month)

data = yf.download(ticker, period="10y", interval="1mo")

Calculate the monthly returns based on the adjusted close prices
'pct change()' computes the percentage change between the current
and prior elements, giving monthly returns

'dropna()' removes any missing values that result from the
percentage change calculation

data['Monthly Return'] = data['Adj Close'].pct change().dropna()

Extract the monthly returns as a NumPy array, excluding the first
element because it's NaN due to 'pct change()'

The first month's return is not calculable as there's no previous
month's data to compare

real monthly returns = data['Monthly Return'].values[1:]

[orskoorskoskok ook skok ook ook] Q99K KoKk kokkkkskokkskokkkkkkxkkk]] of 1 completed

Initial Beliefs

Before we see any data, we start with an initial guess (or "prior") about the stock's average
monthly return. Let's say our initial guess is a 0.1% average monthly return with a standard
deviation (a measure of uncertainty) of 2%.

Initial prior beliefs about the mean monthly return
mean _prior = 0.001 # Initial guess for the mean monthly return
variance prior = 0.02 ** 2 # Variance of the prior

The observation variance represents our assumption about the variability (or uncertainty) in the
new data we observe each month, which in this case is the monthly returns of a stock.

By using the historical variance of the monthly returns, we are making an assumption that the
future variability of these returns will be similar to what we have observed in the past.

In a more complex model, you might consider dynamic models of observation variance, where
the variance itself could change over time or be influenced by other factors. However, for the
sake of simplicity and focus on the core concept of Bayesian updating, using a fixed observation
variance based on historical data simplifies the model without introducing unnecessary
complexity. This allows for a clearer demonstration of how Bayesian updating works. (Note: The
choice of observation variance is a critical assumption in the model. It's essential to consider
whether the historical variance is a reasonable estimate for future variability. Factors like
changes in the company's fundamentals, economic environment, or market conditions could
necessitate adjustments to this assumption.)

Known observation variance (assuming fixed for simplification)
observation variance = np.var(real monthly returns)

Update function

Our update function, update_mean_prior, will take our current beliefs (the "prior"), a new piece
of data (the "observation"), and our assumptions about the data's variability to calculate a new
estimate (the "posterior").

We're assuming that the stock returns follow a normal (Gaussian) distribution. The mean (u) of
the distribution represents the average return of the stock over a certain period. The standard
deviation (o) measures the dispersion or variability around the mean, indicating how much the
returns can deviate from the average return.

Intuitive Explanation

1. Combining Precisions: Adding the precisions (inverse of variances) of the prior and the
observation reflects the idea of accumulating evidence. Each piece of data (observation)
adds to the precision of our knowledge about the parameter.

2. Reduced Uncertainty: The resulting posterior variance is a harmonic mean of the prior
and observation variances, which guarantees it to be smaller than the smallest of the
two. This mathematical property aligns with the intuitive concept that adding new
information reduces uncertainty.

Function to perform Bayesian updating of the mean
def update mean prior(prior mean, prior variance, observation,
observation variance):

posterior variance = 1 / ((1 / prior_variance) + (1 /
observation variance))

posterior mean = posterior variance * ((prior mean /
prior variance) + (observation / observation variance))

return posterior mean, posterior variance

Updating our beliefs

With each new month's return data, we use our function to update our beliefs. This process
refines our estimate of the average monthly return based on all the data we've accumulated.

Lists to store the updated means and variances
updated means = [mean prior]
updated variances = [variance prior]

Sequentially update beliefs with each new month's return
for month return in real monthly returns:

mean_prior, variance prior = update mean prior(mean prior,
variance prior, month return, observation variance)

updated means.append(mean prior)

updated variances.append(variance prior)

Visualizing the Results

Finally, we plot our updated estimates over time, showing how our belief about the average
monthly return has evolved.

Convert variances to standard deviations for plotting
updated stds = np.sqrt(updated variances)

Plotting the updated means over the months, with std deviation as
shaded area

plt.figure(figsize=(10, 6))

plt.plot(updated means, label='Updated Mean Monthly Return')

plt.fill between(range(len(updated means)),
np.array(updated means) - np.array(updated stds),

np.array(updated means) + np.array(updated stds),
color="'lightblue', alpha=0.5, label='Std Dev')
plt.xlabel('Month")
plt.ylabel('Mean Monthly Return')
plt.title('Sequential Update of Beliefs on Mean Monthly Return')
plt.legend()
plt.show()

plt.figure(figsize=(10, 6))

plt.plot(updated stds, label='Updated STD Monthly Return')
plt.xlabel('Month")

plt.ylabel('STD Monthly Return')

plt.title('Sequential Update of Beliefs on STD of Monthly Return')
plt.legend()

plt.show()

Sequential Update of Beliefs on Mean Monthly Return

—— Updated Mean Monthly Return

Std Dev
0.03 +

0.02 1

0.01 1

0.00 A

Mean Monthly Return

—0.01 1

—0.02 1

T T
4] 20 40 60 80 100 120
Month

Sequential Update of Beliefs on STD of Monthly Return

0.020 —— Updated STD Monthly Return

0.018 ~

0.016 -

0.014 4

0.012 4

STD Monthly Return

0.010 1

0.008 +

T T T
0 20 40 60 80 100 120
Month

The updated_stds variable represents the standard deviations of the posterior distributions as
we sequentially update our beliefs with new observations.Decreasing updated_stds in the
context of Bayesian updating signifies a reduction in the uncertainty or variance of our estimates
over time.

Each new piece of evidence contributes to refining our knowledge about a parameter (e.g., the
mean monthly return of a stock). Decreasing updated_stds means that, with each update, we're
becoming less uncertain about the parameter's true value. This is a desired outcome, as it
suggests that the accumulating data is effectively informing our estimates.

Other: Synthetic stock data, and using pymc to
update beliefs

import numpy as np
import pymc as pm
import matplotlib.pyplot as plt

Generate synthetic daily returns data for 30 days (replace this with
real data)

np.random.seed(42)

true mean = 0.001 # True average daily return

daily returns = np.random.normal(true mean, 0.02, 30) # Synthetic
daily returns with mean = 0.001 and std = 0.02

Initial prior beliefs about the mean daily return
mean prior = 0.001 # Initial guess for the mean daily return
std prior = 0.02 # Standard deviation for the prior

List to store the updated means and standard deviations
updated means = [mean prior]
updated stds = [std prior]

Sequentially update beliefs with each new day's return
for day return in daily returns:
with pm.Model() as model:
Prior distribution for the mean return
mean return = pm.Normal('mean return', mu=mean prior,
sigma=std prior)

Assuming a known observation error (standard deviation of
returns)

observation error = 0.02 # This could be adjusted based on
historical volatility

Update with new observation
observed return = pm.Normal('observed return', mu=mean return,
sigma=observation error, observed=day return)

Sample from the posterior
trace = pm.sample(1000, return inferencedata=False, chains=1)

Update the prior with the results of the current day
mean_prior = np.mean(trace['mean return'])
std prior = np.std(trace['mean return'])

Store the updated values
updated means.append(mean prior)
updated stds.append(std prior)

Plotting the updated beliefs over time

days = range(len(updated means))

plt.figure(figsize=(12, 6))

plt.plot(days, updated means, label='Updated Mean Daily Return')
plt.plot(days, updated stds, label='Updated STD Daily Return')
plt.fill between(days, np.array(updated means) -
np.array(updated stds), np.array(updated means) +
np.array(updated stds), color='lightgrey', label='1 STD'")
plt.xlabel('Day")

plt.ylabel('Mean Daily Return')

plt.title('Updated Beliefs on Mean Daily Return Over Time')
plt.legend()

plt.show()

<IPython.core.display.HTML object>

<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.

core

core.

core

core.

core.

core

core.

core.

core

core

core.

core

core.

core.

core

core.

core.

core

core.

core

core

core.

core.

core

core

core.

core

core.

.display.
display.
.display.
display.
display.
.display.
display.
display.
.display.
.display.
display.
.display.
display.
display.
.display.
display.
display.
.display.
display.
.display.
.display.
display.
display.
.display.
.display.
display.
.display.
display.

HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML

object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>

object>

<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.
<IPython.

core

core.

core

core.

core.

core

core.

core.

core

core

core.

core

core.

core.

core

core.

core.

core

core.

core

core

core.

core.

core

core

core.

core

core.

.display.
display.
.display.
display.
display.
.display.
display.
display.
.display.
.display.
display.
.display.
display.
display.
.display.
display.
display.
.display.
display.
.display.
.display.
display.
display.
.display.
.display.
display.
.display.
display.

HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML

object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>
object>

object>

<IPython.core.display.HTML object>
<IPython.core.display.HTML object>
<IPython.core.display.HTML object>

Updated Beliefs on Mean Daily Return Over Time

—— Updated Mean Daily Return
0.02 A Updated STD Daily Return
15TD
0.01 A : /\
E X/
2 .
[7]
o
=5
‘©
o 0.00
c
1]
@
=
—-0.01 4
—0.02
0 5 10 15 20 25 30

Day

